12 research outputs found

    Numerical analysis of the turbomachine blade row aeroelastic oscillations with taking into account the disc deformation

    Get PDF
    НСстационарныС явлСния, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Π΅ колСбаниями Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ ΠΏΠΎΠ΄ дСйствиСм Π²ΠΎΠ·ΠΌΡƒΡ‰Π°ΡŽΡ‰ΠΈΡ… сил, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠΌ энСргиСй ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ Π³Π°Π·Π° ΠΈ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‰ΠΈΠΌΠΈΡΡ Π»ΠΎΠΏΠ°Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ основу физичСского ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ°ΠΌΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ»ΠΈ Π·Π°Ρ‚ΡƒΡ…Π°Ρ‚ΡŒ (аэродСмпфированиС), ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ‚ΡŒΡΡ Π² устойчивой Ρ„ΠΎΡ€ΠΌΠ΅ Π°Π²Ρ‚ΠΎΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΈΠ»ΠΈ Π² нСустойчивой Ρ„ΠΎΡ€ΠΌΠ΅ Ρ„Π»Π°Ρ‚Ρ‚Π΅Ρ€Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ конструкции. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ аэроупругоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ прСдставляСт Π²Π°ΠΆΠ½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ надСТности ΠΈ бСзопасности Π³Π°Π·ΠΎ- ΠΈ ΠΏΠ°Ρ€ΠΎΡ‚ΡƒΡ€Π±ΠΈΠ½Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ с высокими аэродинамичСскими показатСлями ΠΈ соотвСтствСнно высоко Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ Π»ΠΎΠΏΠ°Ρ‚ΠΊΠ°ΠΌΠΈ. Одним ΠΈΠ· ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ устойчивости ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ являСтся расстройка собствСнных Ρ„ΠΎΡ€ΠΌ, связанная с Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ диска. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ числСнный Π°Π½Π°Π»ΠΈΠ· влияния Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ диска Π½Π° аэроупругиС колСбания Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ колСса Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹. ДСформация диска характСризуСтся количСством ΡƒΠ·Π»ΠΎΠ²Ρ‹Ρ… Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎ опрСдСляСт ΠΌΠ΅ΠΆΠ»ΠΎΠΏΠ°Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» сдвига ΠΏΠΎ Ρ„Π°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ сосСдних Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ (ΠœΠ›Π€Π£), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ влияСт Π½Π° нСстационарныС аэродинамичСскиС Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ»ΠΎΠΏΠ°Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° сдвига ΠΏΠΎ Ρ„Π°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ аэроупругой устойчивости, Ρ‚. Π΅. ΠΊ сниТСнию Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ числСнный ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ связанной аэроупругой Π·Π°Π΄Π°Ρ‡ΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ Ρ‚Ρ€Π°Π½Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅ идСального Π³Π°Π·Π° позволяСт ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ аэроупругоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅, ΡΠ°ΠΌΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰ΠΈΠ΅ΡΡ колСбания ΠΈ автоколСбания с Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ экономичности ΠΈ надСТности Π»ΠΎΠΏΠ°Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½.The unsteady phenomena caused by blades oscillations by action of forced forces are characterized with energy change between gas flow and oscillating blades and formulate the base of physical mechanism of self-excited oscillations that can or to attenuate (aerodamping), or to be displayed in stable form of autooscillations, or in unstable form of flutter, which can activate to the structure destruction. Therefore aeroelastic blades behaviour represents the important problem of reliability and safety of gas and steam turbines with high aerodynamic indicators and high loaded blades. One of approaches to increase the stable blades oscillations is detuning of natural forms bound to disc deformation. There presented the numerical analysis of effect of disc deformation on aeroelastic blades oscillations of turbomachine blade row. The disc deformation is characterized by disc nodal diameters number that defines the interblade phase angle of blades oscillations shift (IBPA), and impacts on unsteady aerodynamic loads and blades oscillations amplitudes. In paper there shown that decrease of IBPA causes to increase of aeroelastic stability that is to reduction of blades oscillations amplitudes.The proposed numerical method of coupled aeroelastic problem solution for threedimensional transonic ideal gas flow allows to predict aeroelastic behaviour of blades including the forced, self-excitation oscillations and autooscillations with purpose to increase the efficiency and reliability of turbomachines blades devices

    Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries

    No full text
    This paper analyses the influence of three different ring-type inlet duct geometries on the performance of a small 1 MW backpressure steam turbine. It examines the efficiency and pressure drop of seven turbine variants, including four spiral inlet geometries and three stages with a mass flow rate around 30 t/h. A one-pipe and two-pipe inlets are analysed from aerodynamical point of view, taking into account stator and rotor blades in three stages without the outlet. An outlet is added to the best variant. Also analysed is the occurrence of vortices in the inlets of the studied variants 1–7 as well as the efficiency, drop pressure, turbine power and mass flow. Finally, the best inlet for a 1 MW steam turbine is suggested

    Π§Π˜Π‘Π•Π›Π¬ΠΠ˜Π™ АНАЛІЗ ΠΠ•Π ΠžΠŸΠ Π£Π–ΠΠ˜Π₯ ΠšΠžΠ›Π˜Π’ΠΠΠ¬ Π›ΠžΠŸΠΠ’ΠšΠžΠ’ΠžΠ“Πž ВІНЦЯ Π’Π£Π Π‘ΠžΠœΠΠ¨Π˜ΠΠ˜ Π— УРАΠ₯Π£Π’ΠΠΠΠ―Πœ Π”Π•Π€ΠžΠ ΠœΠΠ¦Π†Π‡ Π”Π˜Π‘ΠšΠ£

    No full text
    The unsteady phenomena caused by blades oscillations by action of forced forces are characterized with energy change between gas flow and oscillating blades and formulate the base of physical mechanism of self-excited oscillations that can or to attenuate (aerodamping), or to be displayed in stable form of autooscillations, or in unstable form of flutter, which can activate to the structure destruction. Therefore aeroelastic blades behaviour represents the important problem of reliability and safety of gas and steam turbines with high aerodynamic indicators and high loaded blades. One of approaches to increase the stable blades oscillations is detuning of natural forms bound to disc deformation. There presented the numerical analysis of effect of disc deformation on aeroelastic blades oscillations of turbomachine blade row. The disc deformation is characterized by disc nodal diameters number that defines the interblade phase angle of blades oscillations shift (IBPA), and impacts on unsteady aerodynamic loads and blades oscillations amplitudes. In paper there shown that decrease of IBPA causes to increase of aeroelastic stability that is to reduction of blades oscillations amplitudes. The proposed numerical method of coupled aeroelastic problem solution for threedimensional transonic ideal gas flow allows to predict aeroelastic behaviour of blades including the forced, self-excitation oscillations and autooscillations with purpose to increase the efficiency and reliability of turbomachines blades devices.НСстаціонарні явища, Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½Ρ– коливаннями Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ ΠΏΡ–Π΄ Π΄Ρ–Ρ”ΡŽ сил, Ρ‰ΠΎ ΠΎΠ±ΡƒΡ€ΡŽΡŽΡ‚ΡŒ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ ΠΎΠ±ΠΌΡ–Π½ΠΎΠΌ Π΅Π½Π΅Ρ€Π³Ρ–Ρ”ΡŽ ΠΌΡ–ΠΆ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ Π³Π°Π·Ρƒ Ρ– ΠΊΠΎΠ»ΠΈΠ²Π½ΠΈΠΌΠΈ Π»ΠΎΠΏΠ°Ρ‚ΠΊΠ°ΠΌΠΈ Ρ– ΡΠΊΠ»Π°Π΄Π°ΡŽΡ‚ΡŒ основу Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ самозбудних коливань, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π°Π±ΠΎ Π·Π°Ρ‚ΡƒΡ…Π°Ρ‚ΠΈ (аСродСмпфування), Π°Π±ΠΎ проявлятися Π² стійкій Ρ„ΠΎΡ€ΠΌΡ– Π°Π²Ρ‚ΠΎΠΊΠΎΠ»ΠΈΠ²Π°Π½ΡŒ, Π°Π±ΠΎ Π² нСстійкій Ρ„ΠΎΡ€ΠΌΡ– Ρ„Π»Π°Ρ‚Π΅Ρ€Π°, який ΠΌΠΎΠΆΠ΅ привСсти Π΄ΠΎ руйнування конструкції. Π’ΠΎΠΌΡƒ Π°Π΅Ρ€ΠΎΠΏΡ€ΡƒΠΆΠ½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠ° Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ являє Π²Π°ΠΆΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ надійності Ρ– Π±Π΅Π·ΠΏΠ΅ΠΊΠΈ Π³Π°Π·ΠΎ- Ρ– ΠΏΠ°Ρ€ΠΎΡ‚ΡƒΡ€Π±Ρ–Π½Π½ΠΈΡ… Π΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π² Π· високими Π°Π΅Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Ρ– Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ високо Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΠΈΠΌΠΈ Π»ΠΎΠΏΠ°Ρ‚ΠΊΠ°ΠΌΠΈ. Одним Π· ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ–Π² Π΄ΠΎ підвищСння стійкості коливань Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ Ρ” Ρ€ΠΎΠ·Π»Π°Π΄ власних Ρ„ΠΎΡ€ΠΌ, ΠΏΠΎΠ²'язаний Π· Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ диска. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— диска Π½Π° Π°Π΅Ρ€ΠΎΠΏΡ€ΡƒΠΆΠ½Ρ– коливання Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΠ³ΠΎ колСса Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½ΠΈ. ДСформація диска Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ”Ρ‚ΡŒΡΡ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ Π²ΡƒΠ·Π»ΠΎΠ²ΠΈΡ… Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π², Ρ‰ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ” ΠΌΡ–ΠΆΠ»ΠΎΠΏΠ°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ ΠΊΡƒΡ‚ зсуву ΠΏΠΎ Ρ„Π°Π·Ρ– коливань сусідніх Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ (ΠœΠ›Π€Πš), який Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° нСстаціонарні Π°Π΅Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– навантаТСння Ρ– Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄ΠΈ коливань Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ. Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ змСншСння ΠΌΡ–ΠΆΠ»ΠΎΠΏΠ°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡƒΡ‚Π° зсуву ΠΏΠΎ Ρ„Π°Π·Ρ– коливань Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ підвищСння Π°Π΅Ρ€ΠΎΠΏΡ€ΡƒΠΆΠ½ΠΎΡ— стійкості, Ρ‚ΠΎΠ±Ρ‚ΠΎ Π΄ΠΎ зниТСння Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄ коливань Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Ρ‡ΠΈΡΠ΅Π»ΡŒΠ½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€ΠΎΠ·Π²'язання Π·Π²'язаної Π°Π΅Ρ€ΠΎΠΏΡ€ΡƒΠΆΠ½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ– Π² Ρ‚Ρ€ΠΈΠ²ΠΈΠΌΡ–Ρ€Π½ΠΎΠΌΡƒ Ρ‚Ρ€Π°Π½Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌΡƒ ΠΏΠΎΡ‚ΠΎΡ†Ρ– Ρ–Π΄Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Π°Π·Ρƒ дозволяє ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΡƒΠ²Π°Ρ‚ΠΈ Π°Π΅Ρ€ΠΎΠΏΡ€ΡƒΠΆΠ½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Π²ΠΈΠΌΡƒΡˆΠ΅Π½Ρ–, самозбудні коливання Ρ– автоколивання Π· ΠΌΠ΅Ρ‚ΠΎΡŽ підвищСння Скономічності Ρ– надійності Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ Π°ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½

    Steam turbine stress control using NARX neural network

    No full text
    Considered here is concept of steam turbine stress control, which is based on Nonlinear AutoRegressive neural networks with eXogenous inputs. Using NARX neural networks,whichwere trained based on experimentally validated FE model allows to control stresses in protected thickwalled steam turbine element with FE model quality. Additionally NARX neural network, which were trained base on FE model, includes: nonlinearity of steam expansion in turbine steam path during transients, nonlinearity of heat exchange inside the turbine during transients and nonlinearity of material properties during transients. In this article NARX neural networks stress controls is shown as an example of HP rotor of 18K390 turbine. HP part thermodynamic model as well as heat exchange model in vicinity of HP rotor,whichwere used in FE model of the HP rotor and the HP rotor FE model itself were validated based on experimental data for real turbine transient events. In such a way it is ensured that NARX neural network behave as real HP rotor during steam turbine transient events

    Π§Π˜Π‘Π›Π•ΠΠΠ«Π™ ΠΠΠΠ›Π˜Π— ВРЁΠ₯ΠœΠ•Π ΠΠžΠ“Πž ΠΠ•Π‘Π’ΠΠ¦Π˜ΠžΠΠΠ ΠΠžΠ“Πž ПОВОКА Π˜Π”Π•ΠΠ›Π¬ΠΠžΠ“Πž ГАЗА Π’ ΠŸΠžΠ‘Π›Π•Π”ΠΠ•Π™ Π‘Π’Π£ΠŸΠ•ΠΠ˜ Π’Π£Π Π‘ΠžΠœΠΠ¨Π˜ΠΠ« Π‘ УЧЁВОМ ΠΠ•ΠžΠ‘Π•Π‘Π˜ΠœΠœΠ•Π’Π Π˜Π§ΠΠžΠ“Πž Π’Π«Π₯Π›ΠžΠŸΠΠžΠ“Πž ΠŸΠΠ’Π Π£Π‘ΠšΠ

    No full text
    A problem related to the forecast of the aeroelastic behavior and aeroelastic instability of blades (in particular self-oscillations, flutter, and resonance vibrations) becomes of great importance for the development of high-loaded compressor and vent rows and the last turbine stages whose long and flexible blades can be exposed to such phenomena. The solution of this problem requires the development of new models for the nonstationary three-dimensional flow, the use of contemporary numeric methods and the comparison of theoretical and experimental data. This scientific paper gives the data of numerical simulation of the 3-D flow of ideal gas passing through the last stage of turbine machine taking into account the flow nonuniformity caused by guide blades and nonuniform pressure distribution in the exhaust pipe branch and also nonstationary effects caused by blade vibrations. The numerical method is based on the solution of combined aeroelastic problem for the 3-D flow of ideal gas passing through the turbine stage and the nonaxisymmetric exhaust pipe branch including the annular diffuser. To solve the combined problem a partially integral method was used that includes integral equations of gas dynamics (Euler equations) and vibrating blade dynamics (modular approach) at each time step with the information exchange. The given method of the solution of combined aeroelastic problem allows us to predict the amplitude-frequency spectrum of blade vibrations in the three-dimensional flow of ideal gas including forced self-excited vibrations and self-vibrations to increase efficiency and reliability of the blade units of turbine machines.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного модСлирования Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° идСального Π³Π°Π·Π° Ρ‡Π΅Ρ€Π΅Π· послСднюю ΡΡ‚ΡƒΠΏΠ΅Π½ΡŒ Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½Ρ‹ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ нСравномСрности ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Π»ΠΎΠΏΠ°Ρ‚ΠΊΠ°ΠΌΠΈ, нСосСсиммСтричным ΠΏΠ°Ρ‚Ρ€ΡƒΠ±ΠΊΠΎΠΌ, ΠΈ нСстационарных эффСктов, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… колСбаниями Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ связанной аэроупругой Π·Π°Π΄Π°Ρ‡ΠΈ позволяСт ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎ-частотный спСктр ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π»ΠΎΠΏΠ°Ρ‚ΠΎΠΊ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅, ΡΠ°ΠΌΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰ΠΈΠ΅ΡΡ колСбания ΠΈ автоколСбания с Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ экономичности ΠΈ надСТности Π»ΠΎΠΏΠ°Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρ‚ΡƒΡ€Π±ΠΎΠΌΠ°ΡˆΠΈΠ½

    Influence of inlet geometry on the efficiency of 1 MW steam turbine

    No full text
    The process of the design of the 1 MW steam turbine includes designing the stator and rotor blades, the steam turbine inlet and exit, the casing and the rotor. A turbine that operates at rotation speeds other than 3000 rpm requires a gearbox and generator with complex electronic software. This article analyses the efficiency of eight turbine variants, including seven inlet geometries and three stages of stator as well as an eight variant with one of the inlets, all three stages and an outlet. This article analyses the efficiency of 8 turbine variants, including four spiral inlet geometries and tree stages in a 1 MW steam turbine. In the article, inlets and 1st stator blades of various geometries were analysed to obtain maximal turbine efficiency. Changing the inlet spiral from one pipe to two pipes increased the turbine efficiency. The geometry of the blades and turbine inlets and outlet was carried out using Design Modeller. The blade mesh was prepared in TurboGrid and inlet in ANSYS Meshing

    An influence of shroud design parameters on the static stresses of blade assemblies

    No full text
    In this study, the structural analysis of the blade assemblies was carried out using the finite element method to determine the influence of design parameters of shroud couplings on the static stresses of turbine rotor blades with zigzag and slant shroud couplings. An angle of inclination of the shroud contact surfaces with respect to the rotor rotation axis was selected as the design parameter. Based on the calculation results, it has been found that irrespective of the type of the shroud coupling, the values of the contact pressure and the stresses in the shroud increase with the angle of inclination of the contact surfaces. Also, for the slant shroud coupling, the stresses increase in the blade airfoil portion with the increase of angle of inclination of the contact surfaces, while for the zigzag shroud coupling the contact stresses decrease with the increase of this angle. It was concluded that the zigzag shroud coupling causes the increase in static stresses when compared to the slant one

    Nonsynchronous Rotor Blade Vibrations in Last Stage of 380 MW LP Steam Turbine at Various Condenser Pressures

    No full text
    This paper presents an analysis of nonsynchronous rotor blade vibrations in the last stage of an LP steam turbine at various condenser pressures. The nonlinear least squares Levenberg–Marquardt method is used in a tip-timing analysis to determine nonsynchronous multimode rotor blade vibrations, which is a novelty. This is done with two sensors in the casing and a once-per-revolution sensor. The accuracy of the nonlinear least squares Levenberg–Marquardt multimode method is compared with the one-mode linear method. The algorithm is verified by comparing it with one-mode tip-timing methods for synchronous and nonsynchronous vibrations. The analysis shows that the rotor blades vibrate simultaneously with two modes in non-nominal conditions, which is also a novelty. The rotor frequencies are unchanged, although the blade vibration amplitudes vary, depending on the pressure in the condenser. Flutter does not appear in the last stage for the various condenser pressures and powers that were tested

    Nonsynchronous Rotor Blade Vibrations in Last Stage of 380 MW LP Steam Turbine at Various Condenser Pressures

    No full text
    This paper presents an analysis of nonsynchronous rotor blade vibrations in the last stage of an LP steam turbine at various condenser pressures. The nonlinear least squares Levenberg–Marquardt method is used in a tip-timing analysis to determine nonsynchronous multimode rotor blade vibrations, which is a novelty. This is done with two sensors in the casing and a once-per-revolution sensor. The accuracy of the nonlinear least squares Levenberg–Marquardt multimode method is compared with the one-mode linear method. The algorithm is verified by comparing it with one-mode tip-timing methods for synchronous and nonsynchronous vibrations. The analysis shows that the rotor blades vibrate simultaneously with two modes in non-nominal conditions, which is also a novelty. The rotor frequencies are unchanged, although the blade vibration amplitudes vary, depending on the pressure in the condenser. Flutter does not appear in the last stage for the various condenser pressures and powers that were tested

    Tip-timing analysis of last stage steam turbine mistuned bladed disc during run-down

    No full text
    This paper presents the experimental and numerical studies of last stage LP mistuned steam turbine bladed discs during run-down. The natural frequencies and mode shapes of the turbine bladed disc were calculated using an FE model. The influence of shaft was considered. The tip-timing method was used to find the mistuned bladed disc modes and frequencies. The numerical results were compared with experimental ones
    corecore